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a b s t r a c t

This paper presents experimental as well as analytic results on a rotational-pendulum

vibration absorber. The characteristic frequencies of the absorber can be tuned

dynamically by adjusting the rotational speed. The device is coupled to the primary

structure through a mechanical spring, thus possessing two natural modes of vibrations

of which the frequency matches one of the two natural frequencies, the oscillations will

be minimized. Whether the pendulum absorber is operating in a resonant mode can be

detected by measuring the phase difference between the motions of the primary

structure and the absorber, which provides an efficient way to tune the rotational speed

for optimal performance. Experimental results confirm the theoretical developments

and also demonstrate the effectiveness of the proposed scheme.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Pendulum vibration absorbers have been devised in several different configurations for various applications. These
include the tuned mass damper (TMD) installed in tall buildings either for mitigation of wind-induced swaying or for
seismic protection [1,2], the centrifugal pendulum absorbers for neutralizing torsional disturbances [3,4], and the
absorbers mounted on a helicopter’s rotor blades for attenuation of aerodynamically induced vibrations [5,6]. Simple
pendulums can also be devised as a nonlinear vibration absorber employing autoparametric resonance, which is due to a
nonlinear coupling between the primary structure and the pendulum subsystem [7–9].

This paper presents experimental as well as analytic results on a rotational-pendulum vibration absorber (Rotational
Pendulum Absorber for short, or RPA). The mechanism is a modified design of the pendulum absorber introduced in [10],
where an RPA rigidly coupled to the primary structure was analyzed and numerically simulated. The modified RPA is
coupled to the primary structure via a mechanical spring, which adds one more degree of freedom to the vibration
absorber. As a result, there are two natural frequencies associated with a nominal rotational speed. The two-degree-of-
freedom device has the merit of achieving higher characteristic frequency with a relatively low rotational speed, thanks to
the second vibration mode. More importantly, the state of the RPA can be detected by measuring the phase angle between
the motion of the primary structure and that of the absorber. The phase angle is near 901 when one of the characteristic
frequencies matches the excitation frequency. The rotational speed could thus be adjusted according to the magnitude of
the detected phase angle. This feature provides an efficient method of tuning the speed for optimal performance. In this
paper analytic derivations will be confirmed by both numerical simulation and real-time experiment.

Similar to an active vibration absorber, characteristic frequencies of the RPA can be dynamically tuned over a wide
range in order to counter external excitation with either uncertain or time-drifting frequencies. However, unlike the active
ll rights reserved.
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techniques that rely on an actuator, such as linear electromagnetic actuators [11–13] and electrohydraulic actuators [14],
to directly counter the external disturbance, the resisting force of RPA does not come from the actuator but from the
inertial force of the revolving pendulum. The scheme may thus be categorized as a ‘‘variable stiffness’’ vibration absorber
[15–19]. The actuator (an electric motor) in the RPA serves the purpose of regulating the rotational speed, thereby
dynamically setting the stiffness of the pendulum absorber. Once the pendulum reaches the target speed, only minimal
power is required to compensate for the rotational frictions. The scheme thus has the flexibility of an active vibration
absorber and the energy-efficient merit of a passive device. The device is best suitable for vibrations with a dominant base
frequency that may drift over time. Possible applications include suppression of vibrations generated by rotary machines,
and interior noise attenuation for a propeller plane [20].

The rest of the paper is organized as follows. Section 2 presents the design and mathematical derivation of the two-
degree-of-freedom RPA. Based on the experimental model, numerical analysis about the device’s natural frequencies is
conducted. Numerical simulations are also conducted to illustrate the performance of the RPA. Section 3 shows how the
phase angle between the primary structure and the RPA is related to the rotational speed given an excitation frequency.
Experimental results on an RPA prototype are presented in Section 4, where time responses of the primary structure for
various operational conditions are recorded and analyzed. Experimental results and theoretical developments are then
compared. Section 5 is a brief conclusion of the paper.
2. Rotational-pendulum absorber with a spring coupler

The RPA consists of a pair of symmetric pendulums driven by an electric motor, which is coupled to the primary
structure via a spring. Fig. 1 depicts the RPA attached to a primary structure. As the pendulums are turning above a critical
speed, they would swing up and down when a periodic force is imposed on the primary structure. If the frequency of the
external excitation is close to one of the RPA’s natural frequencies, the device will oscillate in such a way as to balance the
external force, thereby minimizing the oscillations of the primary structure.

For the purpose of analysis the rotational pendulum is modeled as a lumped mass connected by a massless link, and the
primary structure is simplified to be a mass-spring-damper subject to a harmonic force. The dynamic equations governing
the overall system depicted in Fig. 1 are derived using Lagrange’s equations as follows.

The kinetic energy (denoted by T) and the potential energy (denoted by V) of the system are, respectively,

T ¼
1

2
m0½ð‘ _ysinyþ _x1Þ

2
þð‘ _ycosyÞ2þð‘ _fsinyÞ2�þ

1

2
m1 _x

2
1þ

1

2
m2 _x

2
2 (1)

V ¼m0g‘ð1�cosyÞþ
1

2
k1ðx1�x2Þ

2
þ

1

2
k2x2

2 (2)

where ‘ is the length of the pendulum arm, m0 is the lumped mass of the pendulums (each being m0/2), m1 is the combined
mass of the motor and its holder, k1 is the stiffness of the coupling spring, m2 is the mass of the primary structure, k2 is the
stiffness of the primary structure, x1 is the displacement of the RPA, x2 is the displacement of the primary structure, y is the
vertical angle of the pendulum, and _f is the rotational speed of the pendulums.
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Fig. 1. Schematic of the 2-degree-of-freedom RPA. Each pendulum’s arm extends to a certain equilibrium angle with the vertical axis when spinning at a

constant speed, and will oscillate vertically if the primary structure is excited by a periodic force.
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Let

L¼ T�V (3)

The Lagrange equations for the coordinates of x2, x1, y, and f are, respectively, formulated to be

d
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where d is the excitation force to the primary structure, b2 and b1 are the damping coefficients associated with,
respectively, _x2 and _x2� _x1,
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where b0 is the damping coefficient associated with _y, and
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where u is the torque applied to the rotor and bR is the damping coefficient associated with _f.
From Eqs. (4) to (7) the dynamic equations can be derived to be

m2 €x2þðk1þk2Þx2�k1x1þðb1þb2Þ _x2�b1 _x1 ¼ d (8)
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2.1. Dynamics of the RPA

To derive the dynamic equations governing the RPA, the primary structure is held still such that €x2 ¼ _x2 ¼ x2 ¼ 0. Eq. (9)
is thus reduced to be

m0‘ €ysinyþðm0þm1Þ €x1þm0‘ _y
2
cosyþk1x1þb1 _x1 ¼ 0 (12)

Eqs. (10)–(12) are the governing equations for the RPA. The two natural modes of vibrations for the RPA are sketched in
Fig. 2. Note that for the first mode x1 and y are in phase; for the second mode x1 and y are 1801 out of phase. Before
calculation of the natural frequencies, the equilibrium angle for a constant rotational speed must be obtained.

When the pendulums are regulated at a constant speed, o0, the equilibrium vertical angle y0 can be calculated by
setting €y ¼ €x1 ¼

_y ¼ 0 in Eq. (10):
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The equilibrium angle is solved from the previous equation to be
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Eq. (14) implies that for the RPA to maintain a nonzero equilibrium angle, it must be turning at a speed larger than the
natural frequency of a corresponding simple pendulum.

Denote the deviations about the equilibrium angle y0 and the associated constant speed o0 to be

q¼ y�y0 (15)

p¼ _f�o0 (16)

Assume the control input u to be

u¼ bRo0þkPðo0�
_fÞ (17)



Fig. 2. Two characteristic modes of vibrations: the first mode (a,b) and the second mode (c,d).
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where kP is a positive constant, such that the pendulum is regulated at the speed o0. Using Eqs. (14)–(17), the linearized
equations for Eqs. (12), (10), and (11) about the speed o0 and the corresponding equilibrium angle y0 can be derived to be,
respectively,

ðm0‘siny0Þ €qþðm0þm1Þ €x1þk1x1þb1 _x1 ¼ 0 (18)

m0‘
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m0‘
2sin2 y0 _pþm0‘

2o0sin2y0 _qþðbRþkPÞp¼ 0 (20)

2.2. Natural frequencies of the RPA

To calculate the natural frequencies for the system of Eqs. (18)–(20), the damping terms must be dropped. Moreover,
solutions can be obtained only if either p=0 or bR+kP=0. If p=0, Eqs. (18) and (19) are decoupled from Eq. (20); if bR+kP=0,
from Eq. (20) p is negatively proportional to q so that the term associated with p in Eq. (19) can be replaced by q.

We will first examine the situation where the speed perturbation p in Eq. (19) is negligible. This is the case if bR+kP in
Eq. (20) is large enough: The last term in the left hand side of Eq. (20) dominates if bR+ kP is large enough, implying that p

tends to zero if bR+kP tends to infinity. (This can also be confirmed later by Eq. (22).) In such a case the natural frequencies
for vertical vibrations are determined by Eqs. (18) and (19), with the terms associated with damping (b0, b1) and p dropped.
In matrix form, we have
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Eq. (21) indicates that the stiffness matrix of the RPA is dependent on o0. The stiffness is thus variable by changing the
rotational speed. Physically this can be explained by analogy with the vibration of a simple pendulum (illustrated in Fig. 3).
The natural frequency of a simple pendulum is

ffiffiffiffiffiffiffiffi
g=‘

p
, where ‘ is the length and g is the gravitational acceleration.

Vibrations of the simple pendulum are on a horizontal plane perpendicular to the gravitational force (Fig. 3a). By spinning
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Fig. 3. Analogy between a simple pendulum and the RPA. The vertical gravitational force is replaced by horizontal centrifugal forces.
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the pendulum, we effectively change the vertical force field to a near-horizontal centrifugal force field (Fig. 3b), so that
vertical vibration of the pendulum is possible. Besides, since the centrifugal acceleration is proportional to the square of the
rotational speed, the effective ‘‘g’’ is raised by increasing the speed of rotation. As far as vibrations are concerned, the
gravitational force imposing on the simple pendulum is replaced by a centrifugal force of m0‘o2

0sin2 y0 on the rotational
pendulums.

Next we take the effects of rotational dynamics into account; that is, coupling between p and q is considered. Using
Laplace transform, we may express Eq. (20) to be

PðsÞ ¼ �
m0‘

2o0sin2y0s

m0‘2sin2 y0sþðbRþkPÞ
Q ðsÞ (22)

From Eq. (22) it is seen that if kP is large enough, p is negligible and Eq. (21) holds. Considering the opposite extreme
situation where bR+kP= 0, we have from Eq. (22)

PðsÞ ¼�
m0‘

2o0sin2y0s

m0‘2sin2 y0s
Q ðsÞ ¼ �

2o0cosy0

siny0
Q ðsÞ (23)

Physically the above equation means that, in the absence of external torque, the rotational speed decreases (p negative) as
the pendulum link extends (q positive), and the speed increases (p positive) as the link contracts (q negative), in such a way
as to keep rotational momentum invariant.

Substituting Eq. (23) into Eq. (19) and ignoring the term associated with b0, we have

m0‘
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2o2
0ðsin2 y0þ4cos2 y0Þq¼ 0 (24)

Accordingly the stiffness matrix in Eq. (21) is modified to be
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0 m0‘
2o2
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" #
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Fig. 4 shows the relations between the equilibrium speed and the characteristic frequencies of the vibration absorber.
The parameters used in the calculations are as follows: m0=0.126 kg, m1=0.382 kg, k1=1427 N/m, and ‘¼ 87 mm. They are
consistent with the parameters of the experimental setup which will be detailed later. The solid curves are obtained from
the mass and stiffness matrices of Eq. (21), while the circles are obtained using the stiffness matrix of Eq. (25). It is seen
that the circles match the solid curves except for low rotational speeds, at which the fundamental natural frequency is
higher when considering the variations of rotational speeds. This figure indicates that in practice the coupling between
p and q can be neglected as far as the natural frequencies for vertical vibration are concerned.
2.3. Time response

To illustrate the performance of the RPA, simulation results on the system of Eqs. (8)–(11) are shown in Fig. 5, where the
primary structure is subject to a harmonic excitation with a frequency of 12 Hz (75.4 rad/s). The parameters of the RPA are
the same as in the previous subsection, and m2=1 kg, k2=1000 N/m, b2=10 N s/m. From Fig. 4, for the RPA to possess a
natural frequency of 75.4 rad/s, the rotational speed should be about 54 rad/s. In the simulation the target speed ðo0Þ is
initially set at 50 rad/s, then raised to 54 rad/s after 10 s, and raised further to 60 rad/s after 20 s. It is seen from Fig. 5 that
when the target speed is right, vibrations of the primary structure are minimized. The performance deteriorates if the RPA



Fig. 5. Time response of the system for various rotational speeds: (a) displacement of the primary structure; (b) rotational speed. The target speed ðo0Þ is

switched from 50 to 54 rad/s at 10 s, and from 54 to 60 rad/s at 20 s.

Fig. 4. Calculated characteristic frequencies of the pendulum absorber versus nominal rotational speeds: the solid curves are obtained assuming constant

rotational speeds and the circles assuming freely fluctuating speeds (about a nominal, equilibrium value).
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is significantly under- or over-driven. Also note that the rotational speed fluctuates about o0 due to vertical oscillations of
the rotational arm.

3. Tuning of the rotational speed by phase detection

Vibration of the primary structure is minimized if the excitation frequency coincides with one of the natural frequencies
of the RPA, as illustrated in Fig. 6. The natural frequencies of the RPA depend on the rotational speed o0, which should be
adjusted according to the excitation frequency. The speed can be tuned in one of two ways. The first is by table lookup: The
natural frequency versus rotational speed ðon�o0Þ table is first constructed as in Fig. 4. By measuring the excitation
frequency, the operational speed can then be set according to the table. This method is straightforward but subject to
modeling uncertainties and parameter variations.

The second method is to measure the phase angle between the displacement of the primary structure (x2) and the
displacement of the RPA (x1). In practice this can be done by measuring the respective accelerations, namely €x2 and €x1.
From Eq. (9) and referring to Eq. (21), the linearized equation relating x2 to the variables x1 and q can be written to be

m11 m10

m10 m00

" #
€x1

€q

 !
þ

k1 0

0 k0

" #
x1

q

 !
¼

k1x2

0

� �
(26)



Fig. 6. Frequency response of x2/d (a) and the response of x1/x2 (b). The rotational speed is set to be 50 rad/s. Note that the dips of (a) match the peaks of (b).
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where m11=m0+m1, m10 ¼m0‘siny0, m00 ¼m0‘
2, k0 ¼m0‘

2o2
0sin2 y0; the damping terms are assumed to be negligible. Let

x2 ¼ eiot . From Eq. (26) it can be calculated to be
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ðm11m00�m2
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1Þðo2�o2

2Þ
(28)

where o1 and o2 are the first and the second natural frequencies of the RPA, respectively, and o2
00 ¼ k0=m00. As shown in

Fig. 7, the phase between x2 and x1 switches from 01 to 1801 as the excitation frequency crosses over the first natural
frequency, and back to 0 as it crosses over o00 (the zero of the transfer function); the phase switches to 1801 again when
the excitation frequency crosses over the second natural frequency. This phenomenon can be exploited for the tuning of
the natural frequency of the RPA by adjusting the rotational speed. As illustrated in Fig. 8, where the excitation frequency is
near the second natural frequency of the RPA, when the RPA is under-driven the phase angle tends toward 0; when over-
driven the angle tends toward 1801. Note the difference between Figs. 7 and 8: the former shows the frequency response
with a given o0, while the latter shows the response for various o0’s with a given excitation frequency. As will be
demonstrated in the next section, the phase angles between x1 and x2 can be detected using two accelerometers mounted,
respectively, on the RPA and the primary structure.

In this article the target rotational speed ðo0Þ is adjusted in an open-loop manner; it is not updated automatically.
System stability becomes a critical issue in automatic speed tuning. Generally speaking, to ensure stability the update rate
for the target speed must be slower than the fundamental characteristic of the system. However, the issue of closed-loop
speed adaptation is beyond the scope of the paper.

4. Experiments

The experimental apparatus is shown in Fig. 9, where the snapshots of operations are also presented showing the
pendulums at the states of idling, slowly turning, and fast turning. Parameters of the RPA are measured to be: m1=0.382 kg,
k1=1427 N/m, the pendulum link has a length of 100 mm and a weight of 0.023 kg, the pendulum head is a circular disk of
diameter 22 mm, height 20 mm, and weight 0.04 kg. The combined mass of the pendulum is therefore 0.063 kg, and the
radius of gyration is calculated to be 87 mm. In the numerical analysis of the previous sections, m0 and ‘ are, respectively,
assumed to be 0.126 kg (0.63�2) and 87 mm, which is the radius of gyration. (Since a symmetric pair of pendulums is
installed, the equivalent mass is doubled.)
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To apply a periodic force to the flexible plate (i.e., the primary structure), a reciprocating pneumatic piston is attached
to the plate and is driven by a proportional valve, which is commanded by a function generator. The excitation frequency
can thus be set by adjusting the frequency of the signal out of the function generator.



Fig. 9. Experimental apparatus and snapshots of its operation.

Fig. 10. Acceleration of the flexible plate and its FFT when the RPA is at rest (zero speed).
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Figs. 10–12 show the experimental results for an excitation frequency of 10 Hz. The responses of the flexible plate with
an idle (uncontrolled) RPA, an optimally tuned RPA, and an over-driven RPA, are compared. Both the time response and the
corresponding frequency spectrum by fast Fourier Transform (FFT) are presented. From the uncontrolled response (Fig. 10),
it is seen that the excitation contains a 10 Hz component and its overtones, of which the third harmonic is the most



Fig. 11. Acceleration of the flexible plate and its FFT when the rotational speed is set to be 39 rad/s (optimal speed).

Fig. 12. Acceleration of the flexible plate and its FFT when the rotational speed is set to be 50 rad/s (over-speed).
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significant. When the RPA is activated and the rotational speed is set at 6.2 rps (39 rad/s), the vibrations are sharply
reduced. From the frequency spectrum it is seen that the fundamental component (10 Hz) is almost cleaned out, while the
higher harmonics are also significantly attenuated. The overtones in the measured response can be attributed partly to the
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periodic excitation and partly to the nonlinearity of the structure. Since we use a square-wave signal to drive the
proportional valve, the input signal contains overtones of the base frequency. In addition, nonlinear dynamics are excited
by the pneumatic piston when the displacement is large. That may explain why the overtones are attenuated along with
the fundamental frequency.

If the rotational speed is further increased, the characteristic frequency of the RPA deviates from that of the excitation,
so that the device is no longer capable of countering the excitation force. It is seen in Fig. 12 that, when the rotational speed
is set at 8 rps (50 rad/s), the primary structure vibrates even more severely than the uncontrolled situation.

Table 1 lists the optimal rotational speed corresponding to an excitation frequency varying from 8 to 16 Hz. The optimal
speed for a given excitation frequency is found by tuning the speed until the vibration ð €x2Þ is minimized. The data are
plotted against the analytic results in Fig. 13, where the continuous curves represent calculated values and the plus (+)
Table 1
Optimal rotational speeds for various excitation frequencies.

Excitation frequency (Hz) 8 9 10 11 12 13 14 15 16

(rad/s) 50.3 56.5 62.8 69.1 75.4 81.7 88.0 94.2 100.5

Optimal speed (rad/s) 13.8 30.2 39.0 47.8 54.0 59.1 64.1 71.6 76.7

Fig. 13. Measured (+) and calculated characteristic frequencies of the RPA versus rotational speeds. Measured values are from the data on Table 1.

Fig. 14. €x1 and €x2 are 1801 out of phase at zero rotational speed.



Fig. 15. €x1 and €x2 are about 901 out of phase at the optimal rotational speed.

Fig. 16. €x1 and €x2 are in phase when the pendulums are over-driven at 50 rad/s.
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marks are from experiments. It is seen that the experimental data match fairly well with the calculated values (2nd
characteristic frequency of the RPA). This confirms the derivation of Section 2.

As mentioned in the previous section, the optimal speed can also be found by observing the phase between €x2 and €x1.
Figs. 14–16 show the phase angles between the filtered accelerations of the primary structure ð €x2Þ and the RPA ð €x1Þ. In
these figures the measured acceleration signals are digitally filtered (with a cutoff of 20 Hz) so that the base components
are extracted. It is seen (Fig. 14) that the two signals are at opposite phase when the rotational speed is 0. As the turning
speed is raised, the phase angle is lowered. It approaches 901 at the optimal rotational speed (Fig. 15). When the
pendulums are over-driven, the phase angle drops further toward 01; the two signals are in phase when the rotational
speed is high enough (Fig. 16). The results are consistent with the observations in Section 3.
5. Conclusion

Experimental results on a RPA prototype have shown the effectiveness of the semi-active vibration absorber. The
stiffness of the absorber can be dynamically and continuously adjusted by setting the nominal rotational speed. Results of
numerical analysis on a simplified model agree well with experimental data as far as natural frequencies are concerned.
Exploiting the extra degree of freedom provided by the spring coupler, one may also detect the condition of the absorber
via phase estimation and tune the rotational speed accordingly. Further study may include the design of an efficient
adaptation algorithm for on-line speed tuning.
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